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Fig. 1. Stereoscopic diagram of the unit-cell of SnSO4. Atom code as for Fig.2. 
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Fig.2. The environment of the tin atoms in SnSO4. 
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The condition for the diffraction enhancement of symmetry has been re-examined. From a general 
expression for the square of the structure amplitude for the structures composed of two kinds of parallel 
layers, it has been shown that the diffraction enhancement of symmetry may occur much more generally 
than previously supposed. Two kinds of constituent layers can have arbitrary thickness. It has been 
shown that the twofold rotational axis previously assumed for the local symmetry of each layer can be 
replaced by a twofold screw axis, a mirror plane, or a glide plane. The enhancement can take place not 
only from triclinic symmetry to the monoclinic Laue symmetry, but also from monoclinic symmetry to 
the orthorhombic Laue symmetry. 

Introduction 

Rose, Takeda & Wones (1966) reported that a triclinic 
polytype of mica produced monoclinic X-ray diffrac- 

tion patterns. Sadanaga & Takeda (1968) called this 
phenomenon the 'diffraction enhancement of symme- 
try', which is caused by a particular structure of the 
crystal. According to the latter authors, a triclinic crys- 
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tal gives an X-ray diffraction pattern with the mono- 
clinic Laue symmetry if: (1) the structure consists of a 
stack of parallel layers of two kinds, (2) every layer 
possesses a twofold rotational symmetry axis in a cer- 
tain direction parallel to the layer, (3) the layers are 
stacked in such a way that the origins of all layers are 
arranged along a straight line perpendicular to the 
twofold rotational axis, and (4) the thickness of one 
kind of layer is an integral multiple of tbat for the 
other kind of layer. The crystal should have a metrically 
monoclinic lattice in order to satisfy these condi- 
tions. 

The present authors have re-examined the problem 
and extended it more generally. It has been shown that 
the diffraction enhancement of symmetry can occur 
more generally than was previously believed. 

Formulation of the problem 

With a closer examination of model structures, it was 
revealed that the condition (4) for the thicknesses of 
layers assumed by Sadanaga & Takeda (1968) is un- 
necessary for the diffraction enhancement of symme- 
try. In order to clarify this situation, a general expres- 
sion for the structure amplitude of the crystals with 
structures composed of two kinds of layers should be 
examined in detail. 

Let us assume a structure satisfying the following 
conditions: 

(i) the structure is composed of two kinds of parallel 
layers A and B, 

(ii) the origin of each layer lies on a straight line 
which is not parallel to the layers. 

If the e axis is taken along this line, and the a and b 
axes parallel to the layers, the structure factor of the 
crystal can be expressed as 

F(hkl)= ~ Fj(hkl) exp 2nilzj , (1) 
3 

where Fj(hkl) is the layer structure factor and zj the 
z coordinate of the origin of the j th  layer. The intensity 
of diffracted X-rays is proportional to the square of the 
amplitude, 

IF(hkl)lZ= ~ ~ F~(hkl)F~(hkl)* exp 2nil(z,-zj). (2) 
i d 

Now, let us designate by rA(amBn)a the distance be- 
tween the origins of two A-layers separated by m A- 
layers and n B-layers in fraction of the length of the c 
axis, by ra<amB,)B the distance between A and B layers 
separated by m A-layers and n B-layers, and so forth. 
These distances are determined by m, n and the kinds 
of the terminal layers, and do not depend on the 
stacking sequence of the intervening m+n layers. 
Suppose that there are Na A-layers and NB B-layers in 
a period along the e axis. If, for example, the number of 
the pairs A-A separated by m A-layers and n B-layers 
a r e  NA(AmBn)A per unit period, the equation (2) can be 
rewritten as 

IF(hkl)12= N~lFal ~ + NBIFBI 2 

+½ ~ ~ NAt~mB.>~IFAI 2 [exp 2nilrAca,.B.>A 
t n  n 

+ exp ( -  2nih'mamn.)a)] 

+½ ~ ~ JVscAms.>BIFBI ~ [exp 2nilrBca~B.>B 
m n 

+ exp (-- 2rcilrB<amn.)B)] 

at-½ ~. ~ Na<amnn)BFaF ~ exp 2rtilra(amBn)n 
m n 

+½ ~ ~ NB<AmB,,)AFBF 1 exp 2nilrB(amBn)a 
m Ii 

+½ ~ Z N.4<amBn)BF:FB 
m n 

x exp ( -  27cilrA(.4mBn)B ) 

+½ Z X Nn(AmB,)aF; Fa 
r a  n 

× exp (-2nilrB(amB,)A), (3) 

where Fa and FB are the layer structure factors of A and 
B layers, respectively, and the summation is taken over 
all the possible combinations of m and n. 

The numbers Na~a,,B,)~ etc. depend on the mode of 
stacking. However, the equality, NA(.,tmBn)B = NB{am~n)a, 
holds for any combination of m and n in any periodical 
structure, as shown in the Appendix. Substituting this 
relation into equation (3), we get finally 

IF(hkZ)12= N~IF~I 2 + NBIFBL ~ 

+ ~. ~ NA(amBn)aIFA] 2 COS 27drA(amnn)a 
m n 

+ ~, ~ Nn<Amn,,)BIFBI z COS 2nlrn<a,,,B,,)B 
m n 

+ ~ ~ Na,amn.,B(FaF~ + F]Fn) 
m n 

x cos 2nlracamn.>B. (4) 

The cosine factors in equation (4) have identical values 
for 1 and - l .  Therefore, the diffraction enhancement 
of symmetry may occur if there exist appropriate rela- 
tions between FA(hkl) and FA(hk[), and also between 
FB(hkl) and Fn(hki). 

Examples 

Enhancement from triclinic to monoclinic symmetry 
To begin with, let us consider a triclinic crystal 

whose structure satisfies the conditions (i) and (ii) 
assumed in the derivation of equation (4). The crystal 
axes are also taken as in the previous section. 

(I) Besides the above assumptions, we assume that 
the structure satisfies the following conditions as in 
the case treated by Sadanaga & Takeda (1968): (iii) the 
b axis is perpendicular to the a and c axes, and (iv) 
each layer possesses a twofold rotational axis along the 
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b axis as a local symmetry. Then the following equali- 
ties hold between the layer structure factors: 

FA(hkl)= Fa(hki) and FB(hkl)=F~(hki),  

where the origin of each layer is taken on the twofold 
rotational axis. We readily obtain from equation (4) 
the relation, 

I F ( h k l ) l  = l F ( h k i ) l  . 

Since the crystal has a metrically monoclinic lattice 
according to the assumption (iii), the X-ray diffraction 
pattern of the crystal has obviously the monoclinic 
Laue symmetry 2/m. The structure satisfying the condi- 
tions assumed above can have monoclinic symmetry 
as a whole in special cases. It is, however, possible that 
the layers are stacked in such a way that the resultant 
structure has no twofold rotational axis of symmetry. 
In this case, the structure is triclinic, whereas the Laue 
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Fig. 1. Some examples of stacking modes which yield triclinic 
structures giving monoclinic diffraction patterns when each 
layer has twofold rotational axes of symmetry parallel to 
the layer. The local twofold axes are indicated by broken 
lim.s with arrows. 
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Fig.2. An example of a triclinic structure which gwes mono- 
clinic diffraction patterns~when each layer has a mirror plane 
parallel to the layer. The local mirror planes are indicated by 
thick lines. 
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¢ 

Fig. 3. An example of a monoclinic stl ucture which gives ortho- 
rhombic diffraction patterns. The structure has twofold 
rotational axes perpendicular to the layers. The local two- 
fold rotational axes are indicated by broken lines and open 
spindles. 

symmetry of the diffraction pattern is monoclinic. 
Some simple examples of such stackings are given in 
Fig. 1. 

(II) If each layer has a twofold screw axis in place of 
the twofold rotational axis, the following relations hold 
between the layer structure factors: 

Fa(hkl)=FA(hki) ,  FB(hkl)=FB(hkl) for k =  even, 

Fa(hkl) = - FA(hki), F~(hkO= - F~(hk i) for k = o d d .  

In either case of k, we obtain the relation IF(hkl)l = 
IF(hki)l. Therefore, in this case the crystal also gives a 
strictly monoclinic diffraction pattern, even if the 
structure is triclinic as the result of a specific mode of 
stacking sequence. 

(III) If the conditions (iii) and (iv) are replaced re- 
spectively by the conditions" (iii') the c axis is per- 
pendicular to the layer, and (iv') the constituent layers 
have twofold rotational axes parallel to c, we get the 
relation ]F(hkl)i=lF(hki)l.  This relation is, however, 
not relevant to the diffraction enhancement, since the 
structure is really monoclinic with the unique axis along 
c. A similar situation occurs when each layer has a 
mirror plane perpendicular to the layer and parallel to 
the c axis. 

(IV) Next let us assume the following conditions in 
place of (iii) and (iv)" (iii") the c axis is perpendicular 
to the layer, and (iv") each layer possesses a mirror 
plane parallel to the layer (Fig. 2). Then the following 
relation holds: 

FA(hkl) = FA(hki), F~(hkl) = Fn(hkl). 

From equation (4), we obtain the relation IF(hkl)l = 
IF(hki)l, and accordingly the symmetry of the diffrac- 
tion pattern is monoclinic as in the previous cases, 
even if the stacking sequence of layers is such as 
results in a triclinic symmetry of the structme. The 
unique axis is c in this case. We can get similarly a 
monoclinic diffraction pattern when the mirror plane 
in each layer is replaced by a glide plane. 

It should be noted that, for the symmetry enhance- 
ment to occur, both kinds of layers should have the 
same symmetry. For example, if the symmetry element 
in the type A layer is a twofold rotational axis while 
that in the type B layer is a twofold screw axis, IF(hkl)[ 
is not equal to IF(hki)l owing to the fourth term in 
equation (4). 

Enhancement f rom monoclinic to orthorhombic symmetry 
It is easily seen from equation (4) that the diffraction 

enhancement of symmetry can be, in principle, ob- 
served not only with triclinic crystals but also with 
monoclinic crystals. If a monoclinic crystal satisfies the 
following conditions in addition to the conditions (i) 
and (ii) assumed in the derivation of equation (4), it 
gives orthorhombic diffraction patterns" (iii'") the 
lattice of the crystal is metrically orthorhombic, and 
(iv'") both kinds of layers have an orthorhombic local 
symmetry. It is obvious that each layer can have 
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neither screw axis nor glide plane inclined to the layer. 
A simple example of a monoclinic structure giving 

orthorhombic diffraction patterns is shown in Fig. 3. 
In this structure each layer has three twofold rotational 
axes which are mutually perpendicular. However, only 
the twofold axis perpendicular to the layer is the sym- 
metry element of the whole structure. Accordingly the 
structure is monoclinic having the unique axis along c. 
There are the relations F(hkl)=F(hki)=F(hki)= 
F(hfcl) between the structure factors. Since each layer 
has a twofold rotational axis along b passing through 
the origin of the layer, we have the relations 

Va(hkl)= F.4(hkD, rB(hkl)= rn(hkl). 

Therefore we obtain the relation IF(hkl)l=[F(hkl)[ 
from equation (4) as in the triclinic case. Accordingly 
the diffraction pattern of the crystal should have the 
orthorhombic Laue symmetry mmm irrespective of the 
stacking sequence. 

Conclusion 

Diffraction enhancement of symmetry may appear 
more frequently than conceived by Sadanaga & 
Takeda (1968). No special relation is required in thick- 
ness between two kinds of constituent layers to yield 
the enhancement. Further the twofold rotational axis 
assumed by Sadanaga & Takeda in each layer can be 
replaced by a twofold screw axis, a minor  plane, or a 
glide plane. Diffraction enhancement where a mono- 
clinic crystal produces an orthorhombic diffraction 
pattern is also possible in principle. 

APPENDIX 

When two kinds of layer, e.g. A and B layers, are 
stacked with a certain periodicity, an equality holds 
between the number of the A-B pairs separated by mA 
and nB layers and that of the B-A per repeating unit. 
The equality can be easily proved by mathematical 
induction, as shown below. 

The number of a certain kind of pairs is designated 
by N, and the kind concerned is shown with the sub- 
script of a form such as A(AmB")B, AA(AmB")B etc. 
The subscript A(AmB")B is used for the number N of 
the pairs A-B separated by mA and nB layers, where 
the stacking sequence of the intervening m + n layers is 
disregarded. The subscript AA(A"B')B stands for the 
stacks of (m+2)A and (n+ 1)B layers, where the first 
two layers are A and the last one is B. The sequences of 
the mA and nB layers denoted in parentheses are dis- 
regarded as before. The relation to be proved is writ- 
ten with this notation as 

NA(AmBn)B = NBCAmBn)A • (A1) 

If  the numbers of A and B layers are NA and N8 per 
repeating unit, the following relations must exist: 

NA = NAA + NA. = N . .  + N.~.  

Accordingly, 
NA(A ° B°)= NB(A ° B°)~4 . 

This means that equation (A1) holds when r e = n = 0 .  
Now let us assume that equation (A l) holds for a cer- 

tain combination of m and n. Then we will show that 
equation (A l) also holds when m is replaced by m + 1. 
From the definition the following relations are ob- 
vious: 

NA(Am+ 1Bn)B = NAA(AmBn)B 2f- NAB(Am + 1Bn- 1)B 

: NA(AmBn)B -- NBA(AmBn)B + J~B(A m+ 1vn- 1)B 

-- NBB(Am+ 1Bn- 1)B 
and 

NB(Am+ 1Bn)A ~ NB(AmBn)AA + NB(Am+ 1Bn- 1)BA 

NB(AmBn)A -- NB(AmBn)AB "~- NB(Am+ 1Bn- 1)B 

NB(Am+ 1Bn- 1)BB • 
Therefore, 

NA(Am+ 1Bn)B -- NB(Am+ 1Bn)A 

= NA(AmBn)B -- NBA(AmBn) B 

-- NBB(Am+ 1Bn- 1)B -- NB(AmBn)A 

"{- NB(AmBn)AB + NB(am+ 1B.- 1)BB, 

From the assumption we get, 

NA(Am+ 1en)B -- NB(Am+ 1Bn)A 

= -- NBA(AraBn)B -- NBB(Am+ 1Bn- 1)B 

+ NB(AmBn)AB + NB(Am+ IBn- 1)BB 

= -- NB(Am + 1Bn)B + NB(Am + 1Bn)B 

= 0 .  
i.e. 

NA(Am+ 1Bn)B --~- NB(Am+ 1Bn)A • 

In the same way we can obtain the relation, 

NA(AmBn+ 1)B = NB(AmBn+ 1)A. 

Consequently equation (A 1) should hold for any com- 
bination of m and n. 
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